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·纳米纤维素基血液材料·
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摘 要：纳米纤维素是在某一尺度上具有纳米级的纤维素材料，其具有优异的力学性能和良好的生

物相容性，在血液接触性材料领域得到了迅速的发展。纳米纤维素材料具有可控的血液相容性，作

为抗凝血材料和促凝血材料具有广泛的应用前景。本文讨论了纳米纤维素基血液接触性材料的制备

方法，总结了其在抗凝血与促凝血中的应用，并就其未来应用进行了展望。
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Abstract：Nanocellulose is a kind of cellulose material with one or more dimensions in nanoscale，and has excellent mechanical properties
and good biocompatibility which render its rapid development in the field of blood-contact materials. Nanocellulose materials are of controlla⁃
ble blood compatibility，therefore，have wide application prospects in the field of anticoagulant and procoagulant materials. In the paper，
the preparation of nanocellulose-based blood contact materials were discussed，their applications as anticoagulant and procoagulant materials
were summarized，and their future applications were prospected.
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纳米纤维素是一种可再生的、环境友好的天然材

料，主要包括纤维素纳米纤丝 （Cellulose nanofibril，
CNF）、 纤 维 素 纳 米 晶 体 （Cellulose nanocrystal，
CNC）和细菌纤维素（Bacterial cellulose, BC） [1-3]。纳

米纤维素在表面电荷、长径比、形状和性能等方面显

示出了优异的可调性，在纸基功能材料、生物医用材

料和电子材料等领域得到了广泛的应用[4-6]。

血液接触性材料是一类重要的生物医用材料，其

在组织工程和药物递送领域具有重要的地位。血液接
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触性材料主要包括抗凝血材料和促凝血材料。血液相

容性是评估血液接触性材料对血管内血液形成血栓能

力的重要指标[7]，其调控由使用场景决定。血液透析

回路管、血液透析膜、人工血管和人工心脏瓣膜等抗

凝血材料必须具有优异的血液相容性，能够有效阻止

血浆蛋白和血小板的吸附，不会激活凝血级联发

生[8]。止血材料和伤口敷料等促凝血材料必须具有差

的血液相容性，能够加速凝血的发生[9]。

纳米纤维素材料具有高活性羟基、大长径比和高

强度，可以通过物理改性或化学改性，调控其抗凝血

性/促凝血性。纳米纤维素在血液接触性材料领域得

到了广泛的研究[10-11]，但目前对纳米纤维素在抗凝血

和促凝血的应用进行系统性总结的文献相对较少。本

文介绍了纳米纤维素基血液接触性材料制备及其应

用，并展望了未来的发展前景和面临挑战。

1 纳米纤维素基抗凝血材料

纳米纤维素基抗凝血材料主要通过化学改性和物

理改性制备，可以有效降低血浆蛋白和血小板的吸

附，阻止凝血级联的激活，抑制血栓的形成。纳米纤

维素基抗凝血材料在血液透析、人工血管和心脏瓣膜

领域得到了广泛的应用。

1. 1 纳米纤维素基抗凝血材料的制备

1. 1. 1 化学改性

纳米纤维素基抗凝血材料的化学改性主要包括肝

素化和磺酸化。肝素化改性是指通过共价键固定肝素

到纳米纤维素的表面（图 1（a）） [12]。肝素可以与抗凝

血酶 III结合，活化抗凝血酶 III，使凝血酶、Xa因子

等蛋白酶失活，延长凝血时间。1-(3-二甲氨基丙基)-
3-乙基碳二亚胺盐酸盐/N-羟基琥珀酰亚胺 （EDC/
NHS）是肝素化改性中最常用的酯化剂。肝素化改性

的 BC，其表面固定的肝素浓度可达 48 µg/cm，可以

显著地延长血浆复钙时间（大于 1400 s），降低血小

板吸附[13]。

磺酸化改性是指使用磺化剂将纳米纤维素的活性

羟基取代为硫酸酯基（—OSO3-）的过程。硫酸酯基

可以赋予纳米纤维素具有类似肝素的抗凝血性，有效

地阻止凝血发生。常用的磺化剂包括亚硫酸盐、硫酸

和三氧化硫吡啶。通过亚硫酸盐磺酸化制备的 CNF
的表面具有高的—OSO3-含量（500 µmol/g）和低的 ζ
电位（-25 mV）（图 1（b））。磺酸化可以显著地降低

纳米纤维素的形成凝血酶-抗凝血酶复合物（Throm⁃
bin antithrombin complex，TAT）的浓度，延长激活部

分 凝 血 酶 原 时 间 （Activated partial thromboplastin

time，APTT） 和凝血酶时间 （Thrombin time，TT）。

相比于未磺酸化的 CNF（TAT>10000 µg/L），磺酸化

的CNF在全血中的浓度为 0.5～5.0 mg/mL时可以显著

地降低全血中凝血酶-抗凝血酶复合物的形成（TAT=
2500 µg/L），抑制血液补体激活[14]。通过硫酸磺酸化

制备的 CNC可达到与肝素相似的 ζ电位 （-37 mV）。

磺酸化的 CNC可以通过层层自组装方式涂覆在纤维

素基底上，阻止血浆蛋白的吸附，延长凝血时间[15]。

通过三氧化硫吡啶磺酸化制备的CNC表面的—OSO3-
电荷密度可达 330 mmol/kg（图 1（c））。相比于正常血

浆，当血浆中磺酸化 CNC浓度为 50 µg/mL时，血浆

的激活凝血酶时间和凝血酶原时间从 28 s和 17 s分别

延长到 200 s和 75 s以上[16]。通过三氧化硫吡啶磺酸

化改性的 BC延长了血浆的激活部分凝血酶原时间

（APTT=42 s） 和凝血酶时间 （TT=25 s）。磺酸化的

BC与羧甲基壳聚糖纳米粒子和聚乙醇共混制备的静

电纺丝膜的 APTT和 TT分别为 47～67 s和 25～48 s，
可以达到与肝素相接近的抗凝血能力（APTT=50 s和
TT=33 s） [17]。

不同的磺化剂对纳米纤维素磺酸化有不同的影

响。硫酸磺化法技术成熟，产品质量稳定[15]，但是其

反应速度慢、耗酸量大和环境污染严重；三氧化硫吡

啶磺酸化法速度快、环境污染小、成本低[16]，但是其

反应条件苛刻（浓度和用量需严格控制）；相比于硫

酸和三氧化硫吡啶直接磺化，亚硫酸盐磺化法属于间

接磺化，其制备工艺复杂，生产成本高[14]。

1. 1. 2 物理改性

纳米纤维素基抗凝血材料的物理改性包括纳米纤

维素的结构调控和添加其他亲水性组分，可以调控其

表面的粗糙度和亲水性。表面粗糙度低可降低与血小

板接触面积，阻止血小板的吸附，提高抗凝血性

能[13]；表面亲水性高可以减少血浆蛋白展开/构象变

化，降低血小板和XII因子激活[18]。

纳米纤维素通过接触空气成型或丝光化处理，可

以提高堆积密度，降低其表面粗糙度。通过接触空气

制备的 BC管具有致密的结构和低的内表面粗糙度。

相比于商业化的聚对苯二甲酸乙二醇酯管，接触空气

制备的BC管能够更好地抵抗血小板和白细胞的吸附，

抑制血小板的激活，从而降低凝血酶-抗凝血酶复合

物的形成[19]。丝光化可以提高 BC晶须的直径，使得

BC管具有致密的结构和较低的表面粗糙度。丝光化

后的BC管具有较低的蛋白质和血小板的吸附，可以

作为小口径人工血管使用[20]。

BC管与聚乙烯醇复合可以提高其亲水性。与BC
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管相比，BC/聚乙烯醇复合管可更有效地阻止血小板

的吸附和因子XII的激活，进一步降低了血液补体系

统的激活[18]。

1. 2 纳米纤维素基抗凝血材料的应用

1. 2. 1 血液透析设备

血液透析是目前治疗尿毒症最有效的方法，可以

有效地移除血液中毒素，降低毒素对尿毒症病人脏器

的不利影响。为保证病人的安全，理想的血液透析设

备必须同时具有高效的过滤性能和优异的抗凝血性

能。血液透析设备最核心的组成部分是血液透析回路

管和透析器中的血液透析膜。

纳米纤维素基抗凝血材料可用于制备血液透析回

路管和血液透析膜。磺酸化的纳米纤维素可通过静电

作用涂覆在血液透析回路管内表面 （图 2（a）） 或者

掺杂到血液透析回路管基体中，其可以提高血液透析

回路管的抗凝血性，有利于其保持长期通畅性[11,16]。

纳米纤维素/聚吡咯膜是一种典型的血液透析膜，其

具有高的比表面积 （80 m2/g） 和优异的交换容量

（600～706 µmol/g），可有效地移除低分子质量毒素

（草酸盐提取能力 523～610 µmol/g）。纳米纤维素/聚
吡咯膜经肝素化后，展示了优异的抗凝血性能，其血

小板吸附量从 57%减少到 20%，TAT从 10670 µg/L减
少到 220 µg/L。肝素涂层对纳米纤维素/聚吡咯膜的

离子交换容量和低分子质量毒素移除能力没有显著性

影响[21]。肝素化改性使得纳米纤维素/聚吡咯膜在血

液透析中展现了更大的应用潜力。

醋酸纤维素

肝素

OH

COOH COOHCOOH OSO3
-

NHSO3
-

NHSO3
-

OSO3
- OSO3

-

OSO3
-

OSO3
-

OSO3
-

OH OH OH OH OH OH OH

OH

OH
OHOHOH

OH

OH
OH

BC 肝素化BC

OH

HO

HO

HO

HO

O

O

O

O

O

C

C

O
O

O
O

O
O

O
O

O

O

O

O

O

O

OO

OH OH

OH

CNF

CNC

2, 3-双醛CNF

三氧化硫吡啶

磺酸化的双醛CNF

磺酸化的CNC

n

n n

n n

OH

OH

OH

OH

OH

OH OH

OH

NalO4 0.5 eq NaHSO3

EDC/NHS

-O3S

-O3SO

-O3SO

OH

(a) 肝素化的BC[12]

(b) 磺酸化的双醛CNF[14]

(c) 磺酸化的CNC[16]

图1 纳米纤维素基抗凝血材料的制备

Fig. 1 Preparation of nanocellulose-based anticoagulant materials
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1. 2. 2 人工血管

人工血管常用于替换病变（如血栓和动脉粥样硬

化） 的动脉，治疗心血管疾病 （脑梗、急性心肌梗

死、肺栓塞和深静脉血栓症），实现血运重建。

动脉血管包括三层结构，分别是内膜、中膜和外

膜。内膜的内皮细胞可分泌抗血栓分子和纤溶分子，

起到调节血管张力、炎症、脂质和组织液内稳态以及

抗血栓的作用[22]；中膜的平滑肌细胞、胶原蛋白和弹

性蛋白赋予动脉优异的力学性能（高爆破压、良好的

顺应性、良好的延展性和非线性弹性） [23]；外膜的结

缔组织和成纤维细胞维持动脉稳态和增加动脉刚

性[24]。通过仿生设计制备的具有类似天然血管的结构

和机械性能的人工血管，可以有效地阻止血栓形成，

实现长期通畅性[8]。

BC通过管状生物反应器、应力诱导膜卷曲和模

压方法可以制备 BC基人工血管[25-26]。BC基人工血管

可以很好的模拟天然血管三层结构或者抗凝血的内

膜。具有形状记忆和多层结构的BC基人工血管进行

兔子颈动脉置换后，通畅性可以保持 3周，并且能够

很好的与宿主组织融合，支持宿主细胞活性增长（图

2（b）） [25]。丝光化的 BC管具有更高的力学性能和更

致密的内表面，其在进行鼠腹主动脉移植后，通畅性

长达 16周，支持新组织再生[20]。纳米纤维素可以作

为增强剂提高人工血管基材 （如聚氨酯） 的力学性

能。纳米纤维素复合材料基人工血管可以很好的模拟

天然血管中膜的性质，赋予人工血管优异的力学性

能。非织造纳米纤维素垫与聚氨酯膜通过堆积和模压

成型方法构建的纳米纤维素/聚氨酯基人工血管具有

好的弹性和大的断裂伸长率（800%～1200%），可以

很好的与天然血管的顺应性匹配，有效降低血流扰

动，实现高的通畅性[27]。

1. 2. 3 人工心脏瓣膜

人工心脏瓣膜可以用于替代受损的心脏瓣膜，治

疗瓣膜性心脏病（如瓣膜狭窄或回流） [28]。理想的人

工心脏瓣膜既不会因生物降解而失效，也不会因疲劳

诱导而失效，同时其表面不易形成动脉粥样硬化或

斑块。

非织造纳米纤维素垫与聚氨酯膜通过堆积和模压

成型方法 （压力 10000 kPa，温度 175℃和制备时间

30～60 s）可以制备纳米纤维素增强的聚氨酯心脏瓣

膜。当纳米纤维素的固含量为 5%时，纳米纤维素增

强的聚氨酯心脏瓣膜可以保持良好的生物耐久性、抗

疲劳性和抗凝血性（图 2（c））。在加速疲劳测试中，

纳米纤维素增强的聚氨酯心脏瓣膜循环 6.8×108次后

仍具有很好的力学性能[27]，在人工心脏瓣膜领域显示

了巨大应用前景。

2 纳米纤维素基促凝血材料

纳米纤维素基促凝血材料主要通过物理改性制

备，包括纳米纤维素的结构调控和添加其他促凝血组

分。纳米纤维素基促凝血材料可以通过被动止血机制

（促进纤维蛋白原、红细胞和血小板吸附和聚集引起

凝血）和主动止血机制（凝血酶作用引起凝血）快速

作用于出血部位，缩短止血时间和降低出血量。纳米

纤维素基促凝血材料在止血材料和伤口敷料领域得到

了广泛的应用。

2. 1 纳米纤维素基促凝血材料的制备

2. 1. 1 结构调控

纳米纤维素基促凝血材料的结构调控主要包括：

改变形貌，提高长径比，增大比表面积和增加表面负

电荷。

CNC的形貌影响血浆凝固时间。通过硫酸水解

和乙酸/磷钨酸溶解可以分别制备棒状CNC和圆盘状

的 CNC。相比于圆盘状的 CNC，当棒状 CNC在全血

中浓度为 0.83 mg/mL时，棒状 CNC降低了血浆复钙

时间（224 s），具有促凝血性质[29]。

CNF的长径比和比表面积显著影响其对血浆蛋白

和血小板的吸附。通过控制球磨时间可以制备具有不

同长径比和比表面积的CNF。当球磨 90 min时，CNF
的长径比和比表面积分别为 166和 17 m2/g，其可以将

OSO3
-

OSO3
-

OSO3
- OSO3

-

-O3SO

-O3SO O
O

O
n

O

(a) 磺酸化的CNCs涂覆的血液回路管[16]

(b) 基于BC膜的形状记忆特性构建的
多层BC人工血管[25]

(c) 纳米纤维素/
聚氨酯心脏瓣膜[27]

图2 纳米纤维素基抗凝血材料的应用

Fig. 2 Application of nanocellulose based anticoagulant materials
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全血凝固时间、贫血小板血液凝固时间和肝素抗凝血

液的凝固时间分别缩短 68%、80%和 54%。相比于氧

化再生纤维素止血剂，CNF具有更好的止血性能[30]，

这是由于 CNF形成的网状结构能够捕捉血小板，促

进纤维素蛋白吸附，引起内源性凝血途径激活。

纳米纤维素表面的负电荷，特别是羧基，有利于

迅速地吸附纤维蛋白原和受损的红细胞并激活血小

板，同时羧基对受损红细胞中的铁原子具有较强的络

合能力，导致血细胞或血小板的非特异性聚集，并促

进血凝块的生成。TEMPO氧化可以在 CNF表面引入

羧基，制得羧基化的 CNF（cCNF）。cCNF和海藻酸

钠在Ca2+交联下制得的CNF/海藻酸复合泡沫，具有高

的孔隙率 （大于 85%） 和高的溶胀性 （1399%），可

以提高对红细胞和血小板的吸附，具有优异的止血

性能[31]。

2. 1. 2 添加促凝血组分

纳米纤维素与其他促凝血组分构建的纳米纤维素

基促凝血材料不仅保留了促凝血组分的生物活性，而

且其多孔结构可快速吸收血液中水分，加速止血（表

1）。 添 加 的 促 凝 血 组 分 包 括 大 鲵 皮 肤 分 泌 物

（SSAD） [32]、明胶 （G） [33]、壳聚糖[34]、胶原蛋白[35]、

多巴胺（PDA） [36]、血小板裂解液（PL） [37]、蚕丝蛋

白（SF）和凝血酶（Th） [38]。

羧 基 化 的 CNF 可 以 通 过 离 子 键 和 氢 键 与

SSAD@CNC 交 联 形 成 SSAD@CNC/CNF 海 绵 。

SSAD@CNC赋予 SSAD@CNC/CNF海绵大的孔径尺寸

和粗糙的孔壁，可以迅速吸收血液，浓缩红细胞、血

小板和凝血因子，加速止血。相比于纤维素海绵和明

胶海绵，SSAD@CNC/CNF海绵在非压缩性出血动物

模型中表现出更加优异的止血性能[32]。胺化的Ag颗
粒、明胶（G）和羧基化的CNF可以通过静电作用制

备 CNF/明胶/Ag水凝胶。明胶和胺化的 Ag颗粒增加

了CNF/G/Ag水凝胶对带负电荷残基的红细胞和血小

板的吸附，促进了凝血酶-抗凝血酶复合物的生成，

具有很强的止血效果[33]。羧基化的 CNF（cCNF） 与

壳聚糖发生酰胺缩合反应得到高强度的 CNF/壳聚糖

气凝胶。CNF/壳聚糖气凝胶具有相互连通的孔结构

和高的水吸收能力，能迅速地吸收血液中的水分，同

时壳聚糖的正电荷可与红细胞表面的负电荷反应，进

一步加速了红细胞黏附，从而使血液凝固[39]。cCNF
和 SF可以通过冷冻干燥-EDC/NHS交联制得 cCNF/SF
海绵。cCNF/SF海绵与 Th交联进一步制得 cCNF/SF/
Th海绵。相比于 cCNF/SF海绵，cCNF/SF/Th海绵中

的 Th通过主动止血方式，激活了凝血途径，进一步

促进了血小板活化，提高了止血性能[38]。

醛基化的CNC（aCNC）与 PL通过冷冻凝胶化可

以制备 aCNC/PL冷冻凝胶。aCNC/PL冷冻凝胶中的

PL可以激活血小板，诱导红细胞和血小板迅速地黏

附和凝聚。相比于商业化明胶海绵，aCNC/PL冷冻凝

胶具有很好的强度和优异的弹性，可以更加快速地吸

收血液[37]。

PDA改性的羧基化的BC（cBC-PDA）、多巴胺包

覆的蒙脱土（PDA-MMT）和Ag颗粒通过冷冻干燥可

以制备 cBC-PDA/PDA-MMT/Ag海绵。cBC-PDA/PDA-

MMT/Ag海绵中的多巴胺含有大量酚羟基，可以增加

与血浆纤维连接蛋白的相互作用，促进红细胞和血小

板的吸附，诱导红细胞聚集、血小板活化和凝块

形成[36]。

2. 2 纳米纤维素基促凝血材料的应用

2. 2. 1 止血材料

止血材料可以迅速有效地控制伤口部位的出血。

理想的止血材料应具有快速的止血能力、良好的生物

表1 纳米纤维素基促凝血材料的制备和性能

Table 1 Preparation and properties of nanocellulose based procoagulant materials

纳米纤维素基

促凝血材料

SSAD@CNC/CNF海绵

CNF/G/Ag水凝胶

CNF/CS气凝胶

cCNF/SF/Th海绵

aCNC/PL冷冻凝胶

cBC-PDA/PDA-MMT/Ag海绵

制备方法

离子键和氢键交联

静电作用

酰胺缩合反应

冷冻干燥-EDC/NHS交联

冷冻凝胶化

冷冻干燥

优点

良好的可注射性和优异的抗菌性

适当的液体平衡和优异的抗菌性

良好的可注射性和优异的抗菌性

高的孔隙率和优异的主动止血性能

高的孔隙率和优异的生物活性

良好的柔韧性和优异的抗菌性

缺点

SSAD成分复杂和低毒性

水凝胶可压缩性较差

气凝胶制备工艺复杂

Th长期储存生物活性较差和海绵制备工艺复杂

PL保质期短

海绵制备工艺复杂和成本较高

参考

文献

[32]
[33]
[39]
[38]
[37]
[36]

注 SSAD：大鲵皮肤分泌物；CS：壳聚糖；cCNF：羧基化的CNF；SF：蚕丝蛋白；Th：凝血酶；aCNC：醛基化的CNC；PL：血小板裂解

物；cBC：羧基化的BC；PDA：多巴胺；MMT：蒙脱土。
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相容性和优异的力学稳定性[40]。对于不可压缩性创

伤，止血材料还必须具有可注射性和快速的形状恢复

性[32,41]。在止血材料领域，纳米纤维素基促凝血材料

的形式主要是海绵和水凝胶，利用其多孔结构和活性

组分实现快速止血（表2）。

CNF/壳聚糖（CS）（CNF/CS）海绵具有优异的亲

水-疏水 Janus性、良好的柔韧性、优异的形状记忆性

和良好的细胞相容性。具有 Janus性的CNF/CS海绵的

亲水层有利于吸收血液中水分、促进血小板聚集和激

活血液补体系统，其疏水层有利于防止血液渗透。在

兔肝损伤模型中，相比于只有亲水性的CNF/CS海绵

和商用化的纱布，具有Janus性的CNF/CS海绵具有更快

的止血时间（83 s）和更低的血液损失量（0.60 g） [42]。

负载了 Th的 cCNF/SF/Th海绵能够显著地降低鼠肝的

血液损失量（0.60 g），可以达到与含有凝血酶商品止

血剂（Floseal）相同的止血性能[38]。

cCNC/海藻酸 （SA）（cCNC/SA） 海绵具有较高

的孔隙率、优异的拉伸强度和良好的细胞相容性，有

利于吸收大量的血液，提高对血小板和红细胞的吸附

能力，比商用化的纱布显示出更加快速地止血效果

（表2）。当cCNC添加量为30%时，cCNC-30/SA海绵对

兔子肝的止血时间和血液损失量分别为76 s和0.54 g[31]。
醛基化的CNC/血小板裂解物（PL）（aCNC/PL）冷冻

凝胶具有多孔的结构、良好的机械强度、快速的压缩

回弹性和优异的生物相容性。当 aCNC添加量为 0.6%
时，aCNC-0.6/PL冷冻凝胶比商用化的明胶泡沫具有

更好的止血性能（表 2），其止血时间和血液损失量

分别为85 s和0.54 g[37]。
cBC-PDA/PDA-MMT/Ag海绵具有优异的柔韧性

和良好的生物降解性。在鼠肝损伤模型中，cBC-

PDA/PDA-MMT/Ag海绵对鼠肝的止血时间和血液损

失量分别降低到 32 s和 0.11 g，可以用于不可压缩性

创伤的止血[36]。

2. 2. 2 伤口敷料

伤口敷料作为一种暂时性皮肤替代物，可以用于

治疗皮肤损伤或灼伤。理想的伤口敷料不仅应具有快

速的止血性能，还应该具有优异的抗菌性能，可以有

效降低伤口的炎症反应，促进伤口愈合[10]。

纳米纤维素基促凝血材料通过引入抗菌材料和醛

基化改性，可以实现优异的抗菌性能[33,35,43]。天然抗

生素指甲花醌具有抗炎和抗氧化作用。通过氢键相互

作用，指甲花醌可以负载到 cCNF/CS海绵上 （图 3
（a））。负载指甲花醌的 cCNF/CS（L-cCNF/CS） 海绵

能够实现指甲花醌持续释放，提高伤口部位抗菌活

性。相比于商业化的壳聚糖伤口敷料，L-cCNF/CS海
绵能够上调伤口愈合相关基因表达以及纤维连接蛋白

和弹性蛋白的蛋白表达，加速伤口愈合，促进皮肤重

塑[44]。通过静电纺丝/戊二醛交联的方法，普鲁兰多

糖 -ZnO（Pul-ZnO） 纳米纤维可以修饰到氨烷基硅

烷-g-BC（A-g-BC）（图 3（b））。A-g-BC/Pul-ZnO敷料

能够持续释放ZnO颗粒抗菌，减少伤口部位炎症。相

比于 BC，A-g-BC/Pul-ZnO敷料可以促进伤口愈合、

再上皮化和胶原蛋白合成，并具有更快的凝血效

果[45]。高碘酸钠能够氧化 CNF葡萄糖环的中 C2-C3
键，形成 2,3-二醛基结构（图 3（c））。醛基化的 CNF
敷料不仅具有很好的止血能力，同时显示了优异的抗

菌性能，可以加速伤口愈合，促进血管和再上皮化的

形成[43]。

纳米纤维素基伤口敷料具有良好的抗菌活性，其

作为一种功能性伤口愈合替代品具有很大的发展

空间。

表2 纳米纤维素基促凝血材料和商用化材料的止血性能比较

Table 2 Comparison of hemostatic properties between nanocellulose based procoagulant materials and commercial materials

止血材料

CNF/CS海绵

cCNF/SF/Th海绵

cCNC/SA海绵

aCNC/PL冻凝胶

cBC-PDA/PDA-MMT/Ag海绵

纱布

明胶泡沫

止血机理

主动止血/被动止血

主动止血/被动止血

被动止血

被动止血

被动止血

被动止血

被动止血

止血时间/s
83
—

76
85
32
179
103

血液损失量/g
0.60
0.65
0.54
0.094
0.11
1.74
0.12

动物模型

兔肝损伤

鼠肝损伤

兔肝损伤

鼠肝损伤

鼠肝损伤

兔肝损伤

鼠肝损伤

参考文献

[42]
[38]
[31]
[37]
[36]
[31]
[37]

注 CS：壳聚糖；cCNF：羧基化的CNF；SF：蚕丝蛋白；Th：凝血酶；cCNC：羧基化的CNC；SA：海藻酸钠；aCNC：醛基化的CNC；PL：血小板裂解物；

cBC：羧基化的BC；PDA：多巴胺；MMT：蒙脱土。
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3 结语与展望

纳米纤维素具有良好的亲水性、出色的力学性能

和优异的生物相容性，其在血液接触性材料领域受到

了广泛的关注。纳米纤维素基抗凝血材料主要通过对

纳米纤维素的肝素化和磺酸化来实现长期抗凝血性，

可以用于表面涂覆和填料，提高血液接触性材料的抗

凝血性；纳米纤维素基促凝血材料主要通过对纳米纤

维素的结构调控和添加促凝血组分来实现高促凝性，

其可以用于不可压缩性创伤的快速止血。虽然纳米纤

维素基血液接触性材料获得了广泛的发展，但是仍然

存在一些亟待解决的问题。

（1）纳米纤维素基抗凝血材料的功能化改性。现

有的纳米纤维素基抗凝血材料改性方法主要是通过肝

素化和磺酸化，达到抑制凝血酶作用，因此需要探索

更多的改性方法，如引入纤溶分子、抗血小板吸附分

子和抗凝血酶分子等，可以进一步增强纳米纤维素基

抗凝血材料对其他凝血途径的抑制，提高抗凝血

性质。

（2）纳米纤维素基促凝血材料在特定场景下的应

用。对于不可压缩性创伤，需要继续探索纳米纤维素

基促凝血材料在快速止血的同时如何促进伤口快速愈

合；对于自身凝血功能障碍的患者，需要继续研究纳

米纤维素基促凝血材料如何结合被动止血和主动止血

实现高效快速止血。

（3）纳米纤维素基促凝血材料的产品形态。纤维

素基功能材料的优势可以通过湿部成形、流延或真空

抽滤-热压等方式得到纤维素纸基材料，便于大规模

应用。纳米纤维素基促凝血材料，特别是止血材料，

目前主要是海绵和凝胶形态，探索采用湿法造纸工艺

或后涂布工艺生产止血产品，将会大范围的拓展这一

类材料的应用。
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图3 纳米纤维素基伤口敷料的制备

Fig. 3 Preparation of nanocellulose-based wound dressing
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·消息·

《绿色纸质外卖包装通用要求》团体标准研讨会在上海召开
2021年 11月 8日，中国造纸学会纸基绿色包装材料及制

品专业委员会（以下简称纸基绿色包装专委会）在上海组织

召开《绿色纸质外卖包装通用要求》团体标准研讨会。受疫

情影响，本次会议以线上线下相结合的形式召开。

中国制浆造纸研究院有限公司副总经理、中国造纸学会

纸基绿色包装材料及制品专业委员会主任田超博士参加了会

议。田超博士首先对参加此次会议的嘉宾表示欢迎。他表示

《绿色纸质外卖包装通用要求》团体标准是纸基绿色包装专委

会成立以来组织制定的第一个团体标准，是专委会对限塑令

中关于外卖包装要求的积极响应，旨在通过该标准推动纸质

外卖包装产品的绿色发展。希望参标企业针对标准讨论稿多

提宝贵意见和建议，使这项标准能够尽快发布，以更好地推

广并引导外卖行业使用。

中国制浆造纸研究院有限公司中国造纸杂志社副社长、

中国造纸学会纸基绿色包装材料及制品专业委员会秘书长刘

振华主持了研讨会，并介绍了 《绿色纸质外卖包装通用要

求》团体标准的起草背景。为响应国家禁塑政策要求，支撑

外卖行业绿色供应链建设，纸基绿色包装专委会于 2021年 5
月发起 《绿色纸质外卖包装通用要求》 团体标准的制定工

作，经样品征集、实验验证，形成草案，组织参标企业研究

讨论。

中轻纸品检验认证有限公司标准部部长助理温建宇介绍

了标准起草情况、标准内容、试验验证结果及下一步工作计

划。根据该标准，绿色纸质外卖包装按功能分为纸质餐饮具

和手提纸袋，共分为纸杯、纸碗、纸餐盒、纸袋、纸浆模塑

餐具、纸吸管、纸板盒（折叠纸盒）、手提纸袋等 8个产品系

列，并根据外卖场景设置了性能要求。

在听取了标准工作的介绍后，来自北京三快在线科技有

限公司、深圳市裕同包装材料科技股份有限公司、福建南王

环保科技股份有限公司、韶能集团广东绿洲生态科技有限公

司、沙伯特（中山）有限公司、仙鹤股份有限公司、鹤山市

德柏纸袋包装品有限公司、浙江庞度环保科技有限公司等参

标企业的与会专家对标准草案进行了认真研讨并提出了修改

意见和建议。
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